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Abstract

We prove an analogue of Kronecker’s second limit formula for a continuous family of
“indefinite zeta functions”. Indefinite zeta functions were introduced in the author’s
previous paper as Mellin transforms of indefinite theta functions, as defined by
Zwegers. Our formula is valid in dimension g = 2 at s = 1 or s = 0. For a choice of
parameters obeying a certain symmetry, an indefinite zeta function is a differenced ray
class zeta function of a real quadratic field, and its special value at s = 0 was
conjectured by Stark to be a logarithm of an algebraic unit. Our formula also permits
practical high-precision computation of Stark ray class invariants.
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1 Introduction
In a previous paper [4], we introduced indefinite zeta functions as Mellin transforms of
certain indefinite theta functions associated with the intermediate Siegel half-spaceH(1)

g ,
defined below. In this paper, we obtain a formula for the values of such an indefinite
zeta function at s = 1 or s = 0, in the special case of dimension g = 2. Such formulas
are traditionally called Kronecker limit formulas, after Kronecker’s first and second limit
formulas giving the constant term in the Laurent expansion at s = 1 of standard and
twisted real analytic Eisenstein series.
When our parameters are specialised appropriately, our special value is a finite linear

combination of Hecke L-values at s = 1. Our formula may be used to compute values
of Hecke L-functions at s = 1 (resp. s = 0) relevant to the Stark conjectures, which we
discuss in Sect. 1.4.
For imaginary quadratic fields, Stark proved his conjectures using Kronecker’s first and

second limit formulas together with the theory of singular moduli [16]. The Kronecker
limit formulas give the constant Laurent series coefficient at s = 1 for families of Dirichlet
series continuously interpolating the ray class zeta functions ζ (s, A)—namely, standard
and twisted real analytic Eisenstein series (see [15] for details).
Kronecker limit formulas applicable to real quadratic fields were developed by Hecke,

Herglotz, and Zagier (in analogy with the first Kronecker limit formula), and by Shintani
(in analogy with the second Kronecker limit formula). As in the imaginary quadratic
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case, these formulas are obtained by continuously interpolating between ray class zeta
functions using a larger family of functions. Hecke’s formula uses cycle integrals of real
analytic Eisenstein series, whereas the formulas of Herglotz [2] and Zagier [23] (see also
[1,7]) and the formulas of Shintani [12–14] use partial zeta functions defined by summing
over a cone. Analogues of the Kronecker limit formulas in other settings have been found
by Liu and Masri [5], Posingies [6], and Vlasenko and Zagier [22], among others.
The main theorem of this paper supplies a new real quadratic analogue of Kronecker’s

second limit formula based on a new interpolation between ray class zeta functions.
The interpolation is by the indefinite zeta functions introduced in [4], which are Mellin
transforms of nonholomorphic indefinite theta functions. Indefinite zeta functions have a
nice functional equation, but they do not have a Dirichlet series representation for general
parameters.
The main results on indefinite zeta functions—stated in Sect. 1.3—require a lot of nota-

tion, defined in Sects. 1.1 and 1.2. The proofs of the indefinite Kronecker limit formulas
are provided in Sect. 2.

1.1 Notational conventions and preliminaries

We list some notational conventions used in the paper.

• e(z) := exp(2π iz) is the complex exponential, and this notation is used for z ∈ C not
necessarily real.

• If x is a real number, then {x} = x − �x� denotes the fractional part of x.
• H := {τ : Im τ > 0} is the complex upper half-plane.
• Nontransposed vectors v ∈ C

g are always column vectors; the transpose v� is a row
vector.

• If M is a g × g matrix, then M� is its transpose, and (when M is invertible) M−� is a
shorthand for

(
M−1)�.

• QM(v) denotes the quadratic form QM(v) := 1
2v

�Mv, whereM is a g × g matrix, and
v is a g × 1 column vector.

• f (c)
∣∣c2
c=c1 := f (c2) − f (c1), where f is any function taking values in an additive group.

• If v = ( v1v2
) ∈ C

2 and f is a function on C
2, we may write f (v) as f

( v1v2
)
rather than

f
(( v1v2

))
.

• We often express � = iM +N whereM,N are real g × g symmetric matrices;N and
M will always have real entries even when we do not say so explicitly.

We use complex logarithms throughout this paper. If f (τ ) is any nonvanishing holomor-
phic function on the upper half plane H, there is some holomorphic function (Log f )(τ )
such that exp((Log f )(τ )) = f (τ ), becauseH is simply connected. Specifying a single value
(or the limit as τ approaches some element of R ∪ {∞}) specifies Log f uniquely. It won’t
necessarily be true that (Log f )(τ ) = log(f (τ )), only that exp((Log f )(τ )) = f (τ ).
Conventions for square roots, when not specified, follow [4, Sects. 2.3, 3.2].
We recall the definition of the Siegel intermediate half-space, as defined in [4].

Definition 1.1 For 0 ≤ k ≤ g , we define the Siegel intermediate half-space of genus g
and index k to be

H(k)
g := {� ∈ Mg (C) : � = �� and Im(�) has signature (g − k, k)}. (1.1)
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TheH(k)
g are the open orbits of the action of Sp2g (R) by fractional linear transformations

on the space of complex symmetric matrices. In particular,H(0)
g is the usual Siegel upper

half-space.

1.2 Indefinite theta and zeta functions

We review the relevant definitions from Kopp [4].

Definition 1.2 For any complex number α, define the function

E(α) :=
∫ α

0
e−πu2 du, (1.2)

where the integral runs along any contour from 0 to α.

Definition 1.3 Let � = iM + N be a complex symmetric matrix whose imaginary part
has signature (g − 1, 1); that is, � ∈ H(1)

g . Define the (nonholomorphic) indefinite theta
function

�c1 ,c2 (z,�) :=
∑

n∈Zg
E
⎛

⎝ c�Im(�n + z)
√

− 1
2c�Im(�)c

⎞

⎠

∣
∣∣∣
∣∣

c2

c=c1

e
(
1
2
n��n + n�z

)
, (1.3)

where z ∈ C
g , c1, c2 ∈ C

g , c1�Mc1 < 0, and c2�Mc2 < 0. The series (1.3) converges
absolutely and uniformly for z ∈ R

g + iK , with K any compact subset of Rg , by [4,
Proposition 3.11].

Nonholomorphic indefinite theta functions were first studied by Vignéras [20,21] and
were rediscovered (in a more explicit form) by Zwegers [24]. Zwegers’ (elliptic modular
indefinite) theta function is defined for real cj when (in our notation)N is a scalarmultiple
of M. More precisely, if M is real symmetric matrix of signature (g − 1, 1), τ ∈ H, and
c1, c2 ∈ R

g , then �c1 ,c2 (Mz, τM) is equal up to an exponential factor to the function
ϑ
c1 ,c2
M (z, τ ) introduced by Zwegers in [24, p. 27]. Our theta functions extend Zwegers’

to the Siegel modular setting; a related generalisation has also been recently studied by
Roehrig [8,9]. Recent work of Roehrig and Zwegers also considers more general elliptic
modular indefinite theta series involving spherical functions [10,11].

Definition 1.4 Let � = iM + N ∈ H(1)
g . Define the indefinite theta function with char-

acteristics p,q ∈ R
g :

�c1 ,c2
p,q (�) := e

(
1
2
q��q + p�q

)
�c1 ,c2 (p + �q,�) . (1.4)

where c1, c2 ∈ C
g , c1�Mc1 < 0, and c2�Mc2 < 0.

We define the indefinite zeta function using a Mellin transform of the indefinite theta
function with characteristics.

Definition 1.5 Let � = iM + N ∈ H(1)
g . For Re(s) > 1, the completed indefinite zeta

function is

ζ̂ c1 ,c2
p,q (�, s) :=

∫ ∞

0
�c1 ,c2

p,q (t�)ts
dt
t
, (1.5)



   24 Page 4 of 21 G. Kopp Res Math Sci          (2023) 10:24 

where p,q ∈ R
g , and c1, c2 ∈ C

g are parameters satisfying c1�Mc1 < 0 and c2�Mc2 < 0.

The completed indefinite zeta function has an analytic continuation and satisfies a
functional equation, given as [4, Theorem 1.1] and repeated here.

Theorem 1.6 (Analytic continuation and functional equation for ζ̂
c1 ,c2p,q (�, s)) The func-

tion ζ̂
c1 ,c2p,q (�, s)may be analytically continued to an entire function of s ∈ C. It satisfies the

functional equation

ζ̂ c1 ,c2
p,q

(
�,

g
2

− s
)

= e
(
p�q

)

√
det(−i�)

ζ̂
�c1 ,�c2−q,p

(−�−1, s
)
. (1.6)

1.3 Kronecker limit formulas for indefinite zeta functions

The Kronecker limit formula for indefinite zeta functions involves the dilogarithm func-
tion and a rapidly convergent integral of a logarithmof an infinite product.We also require
the following definition of the function κc

�(v), which is the square root of a rational func-
tion and appears as a factor in the integrand.

Definition 1.7 Suppose � = iM + N ∈ H(1)
2 , c ∈ C

2 satisfying c�Mc < 0, and v ∈
C
2\{0}. Let 
c

� := � − i
QM (c)Mcc�M. Then, we define

κc
�(v) :=

c�Mv

4π i
√−QM(c)Q�(v)

√
−2iQ
c

�
(v)

. (1.7)

The sign of
√−QM(c) is defined by Kopp [4, Lemma 3.4 and Definition 3.5], whereas√

−2iQ
c
�
(v) is the standard branchof the square root function (whereRe

(
−2iQ
c

�
(v)

)
>

0 because 
c
� ∈ H(0)

2 ).

We now state the main theorem.

Theorem 1.8 (Indefinite Kronecker limit formula at s = 1) Let � = iM + N ∈ H(1)
2 ,

p = ( p1
p2

) ∈ R
2\Z2, and c1, c2 ∈ C

2 such that cj�Mcj < 0. For c ∈ {c1, c2}, factor the
quadratic form

Q
c
�

(
ξ
1
) = α(c)(ξ − τ+(c))(ξ − τ−(c)), (1.8)

where τ+(c) is in the upper half-plane and τ−(c) is in the lower half-plane. Then

ζ̂
c1 ,c2
p,0 (�, 1) = I+(c2) − I−(c2) − I+(c1) + I−(c1), (1.9)

where

I±(c) := −Li2(e(±p1))κc
�

( 1
0
)

+ 2i
∫ ∞

0

(
Log ϕ{p1},±p2

)
(±τ±(c) + it)κc

�

(
±(τ±(c)+it)

1

)
dt. (1.10)

Here (and in the other variants of this theorem to follow), {p1} = p1 −�p1� ∈ [0, 1) denotes
the fractional part of p1. The functionϕp1 ,p2 : H → C is defined by the a product expansion,

ϕp1 ,p2 (ξ ) := (1 − e(p1ξ + p2))
∞∏

d=1

1 − e((d + p1)ξ + p2)
1 − e((d − p1)ξ − p2)

, (1.11)
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and for 0 ≤ p1 < 1 its logarithm
(
Log ϕp1 ,p2

)
(ξ ) is the unique continuous branch with the

property

lim
ξ→i∞

(
Log ϕp1 ,p2

)
(ξ ) =

{
log(1 − e(p2)) if p1 = 0,
0 if p1 �= 0.

(1.12)

Here log(1 − e(p2)) is the standard principal branch.

In Theorem 1.8, the function
(
Log ϕp1 ,p2

)
(ξ ) may be equivalently defined as

(
Log ϕp1 ,p2

)
(ξ ) = log(1 − e(p1ξ + p2))

+
∞∑

d=1
(log(1 − e((d + p1)ξ + p2)) − log(1 − e((d − p1)ξ − p2))) .

(1.13)

Each logarithm is of the form log(1 − z) for |z| < 1, and considering the first Taylor
approximation log(1 − z) = z + O(z2) shows that the series is absolutely convergent and
the function converges rapidly to the limit specified in (1.12) as ξ → i∞.
The following specialisation of Theorem 1.8 looks somewhat simpler and contains all

of the cases of arithmetic zeta functions ZA(s) associated with real quadratic fields.

Theorem 1.9 (Indefinite Kronecker limit formula at s = 1, pure imaginary case) Let M
be a 2 × 2 real matrix of signature (1, 1), and let � = iM. Let p = ( p1

p2
) ∈ R

2 \ Z2, and let
c1, c2 ∈ R

2 such that c�j Mcj < 0. Then,

ζ̂
c1 ,c2
p,0 (�, 1) = 2i Im(I(c2) − I(c1)) , (1.14)

where

I(c) = −Li2(e(p1))κc
�

( 1
0
)

+ 2i
∫ ∞

0

(
Log ϕ{p1},p2

)
(τ (c) + it)κc

�

(
τ (c)+it

1

)
dt. (1.15)

Here, Log ϕ{p1},p2 and κc
� are defined as in the statement of Theorem 1.8, and ξ = τ (c) is

the unique root of the quadratic polynomial Q
c
�

(
ξ
1
)
in the upper half plane.

It is straightforward to use the functional equation for the indefinite zeta function to
rephrase Theorems 1.8 and 1.9 as formulas for ζ̂

c1 ,c2
0,q (�, 0).

Theorem 1.10 (Indefinite Kronecker limit formula at s = 0) Let � = iM + N ∈ H(1)
2 ,

q = ( q1
q2

) ∈ R
2\Z2, and c1, c2 ∈ C

2 such that cj�Mcj < 0. For c ∈ {c1, c2}, factor the
quadratic form

Q

�c

−�−1

(
ξ
1
) = β(c)(ξ − ω+(c))(ξ − ω−(c)), (1.16)

where ω+(c) is in the upper half-plane and ω−(c) is in the lower half-plane. Then,

ζ̂
c1 ,c2
0,q (�, 0) = 1

√
det(−i�)

(
J+(c2) − J−(c2) − J+(c1) + J−(c1)

)
, (1.17)
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where

J±(c) := −Li2(e(∓q1))κ�c
−�−1

( 1
0
)

+ 2i
∫ ∞

0

(
Log ϕ{−q1},∓q2

)
(±ω±(c) + it)κ�c

−�−1

(
±(ω±(c)+it)

1

)
dt. (1.18)

Here, Log ϕ and κ are defined as in the statement of Theorem 1.8.

Theorem 1.11 (Indefinite Kronecker limit formula at s = 0, pure imaginary case) Let M
be a 2 × 2 real matrix of signature (1, 1), and let � = iM. Let q = ( q1

q2
) ∈ R

2 \ Z2, and let
c1, c2 ∈ R

2 such that c�j Mcj < 0. Then,

ζ̂
c1 ,c2
0,q (�, 0) = 2i

√
det(M)

Im(J (c2) − J (c1)) , (1.19)

where

J (c) = −Li2(e(−q1))κ�c
−�−1

( 1
0
)

+ 2i
∫ ∞

0

(
Log ϕ{−q1},−q2

)
(ω(c) + it)κ�c

−�−1

(
ω(c)+it

1

)
dt. (1.20)

Here, Log ϕ and κ are defined as in the statement of Theorem 1.8, and ξ = ω(c) is the
unique root of the quadratic polynomial Q


�c
−�−1

(
ξ
1
)
in the upper half plane.

1.4 Application: indefinite zeta functions, real quadratic fields, and Stark units

The Hecke L-value LK (1,χ ) contains arithmetic information that is not well-understood
in general. The abelian Stark conjectures predict that this value is an algebraic number
times a regulator Regχ , which is a determinant of a matrix of linear forms in logarithms
of algebraic units in a particular abelian extension of the number field K [16–19]. This
conjecture is known when the base field K is equal to Q or an imaginary quadratic field,
but not (for instance) when K is a real quadratic field.
The rank 1 abelian Stark conjectures give a partial answer to Hilbert’s 12th Problem,

which asked for explicit generators for the abelian extensions of a number field in terms
of special values of transcendental functions. Computationally, the Stark conjectures are
used to calculate class fields in the computer algebra systems Magma and PARI/GP.
The Stark conjectures are most precisely formulated in the rank 1 case—that is, when

LK (s,χ ) vanishes to order 1 at s = 0. The regulator Regχ in that case is a determinant of a
1×1matrix. The rank 1 abelian Stark conjecture is most succinctly written as a statement
about the ray class zeta function (of a ray ideal class A)

ζ (s, A) := ζK (s, A) :=
∑

a∈A
N (a)−s (1.21)

rather than as a statement about the Hecke L-function

LK (s,χ ) =
∑

A
χ (A)ζ (s, A). (1.22)

Just as definite zeta functions specialise to ray class zeta functions of imaginary quadratic
fields, indefinite zeta functions specialise to differenced ray class zeta functions of real
quadratic fields. The full details of this specialisation are given in [4, Sect. 7].
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Definition 1.12 (Ray class zeta function) Let K be any number field and c an ideal of the
maximal orderOK . Let S be a subset of the real places of K (i.e. the embeddings K ↪→ R).
Let A be a ray ideal class modulo cS, that is, an element of the group

ClcS(OK ) := {nonzero fractional ideals ofOK coprime to c}
{aOK : a ≡ 1 (mod c) and a is positive at each place in S} . (1.23)

For Re(s) > 1, define the ray class zeta function of A to be

ζ (s, A) :=
∑

a∈A
N (a)−s. (1.24)

This function has a simple pole at s = 1 with residue independent of A. The pole may be
eliminated by considering the function ZA(s), defined as follows.

Definition 1.13 (Differenced ray class zeta function) Let R be the element of ClcS(OK )
defined by

R := {aOK : a ≡ −1 (mod c) and a is positive at each place in S}. (1.25)

For Re(s) > 1, define the differenced ray class zeta function of A to be

ZA(s) := ζ (s, A) − ζ (s, RA). (1.26)

The function ZA(s) extends to a holomorphic function on the whole complex plane. The
rank 1 abelian Stark conjecture says that Z′

A(0) is the logarithm of an algebraic unit.

Conjecture 1.14 (Stark [18]) Let K be a real quadratic field and {ρ1, ρ2} the real embed-
dings of K . If R is not the identity of Clc∞2 (OK ), then Z′

A(0) = log(ρ1(εA)) for an algebraic
unit εA generating the ray class field Lc∞2 corresponding to Clc∞2 (OK ). The units are
compatible with the Artin map: εArt(A)id = εA.

The specialisation of the indefinite zeta function to a differenced real quadratic zeta
function is given by the following result, which is [4, Theorem 1.3].

Theorem 1.15 (Specialisation of indefinite zeta function at s = 0) For each ray class
A ∈ Clc∞1∞2 (OK ) and integral ideal b ∈ A−1, there exists a real symmetric 2 × 2 matrix
M, vectors c1, c2 ∈ R

2, and q ∈ Q
2 such that

(2πN (b))−s�(s)ZA(s) = ζ̂
c1 ,c2
0,q (iM, s). (1.27)

We may use Theorem 1.15 to compute presumptive Stark units exp(Z′
A(0)). Specifically,

Corollary 1.16 Under the specialisation given by Theorem 1.15,

Z′
A(0) = ζ̂

c1 ,c2
0,q (iM, 0). (1.28)

Proof Take the limit of (1.27) as s → 0. ��
As a proof of concept, we give an example of such a (numerical) computation in Sect. 3.

For now, we summarise that calculation.

Example 1.17 For the real quadratic field K = Q(
√
3) and for c = 5OK , we compute

Z′
I (0), where I is the principal ray class of Clc∞2 (OK ). Specifically, Corollary 1.16 gives

Z′
I (0) = ζ̂

c1 ,P3c1
0,q (iM, 0) forM = ( 2 0

0 −6
)
,q = ( 1/5

0
)
, P = ( 2 3

1 2
)
, (1.29)
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and any choice of c1 ∈ R
2 with QM(c1) < 0. After optimising choices, Theorem 1.11 is

used to numerically compute

exp(Z′
I (0)) ≈ 3.89086171394307925533764395962, (1.30)

which agrees (to 30 digits) with the root of a particular degree eight polynomial (3.12)
overOK whose roots are algebraic units in the appropriate class field.

2 Proof of the Kronecker limit formulas
The method of proof is to compute the Fourier series in ξ for an indefinite theta function
with respect to an action by a one-parameter unipotent subgroup {T ξ : ξ ∈ R} of SL2(R),
where T = ( 1 1

0 1
)
and T ξ = ( 1 ξ

0 1
)
, then take a Mellin transform and specialise variables.

After taking theMellin transform,wemust allow ξ to be a complex parameter andperform
a fairly delicate contour integration. Unlike in the definite case, the Fourier coefficients
of the indefinite theta are not elementary functions, which ultimately leads to a more
complicated Kronecker limit formula.
We fix the following notation for this section. Let c1, c2 ∈ C

2 satisfying cj�Mcj < 0,
and consider the indefinite theta �

c1 ,c2p,q with characteristics p,q ∈ R
2, as defined in

Definition 1.4. Let t > 0, � ∈ H(1)
2 , andM = Im(�). Write the indefinite theta of t� as

�c1 ,c2
p,q (t�) =

∑

n∈Z2

ρ
c1 ,c2
Im(t�)(n + q) e

(
Q�(n + q)t + p�(n + q)

)
(2.1)

=
∑

n∈Z2

ρ
c1 ,c2
M

(
(n + q)t1/2

)
e
(
Q�(n + q)t + p�(n + q)

)
, (2.2)

where

ρ
c1 ,c2
M (v) := ρ

c2
M (v) − ρ

c1
M (v), (2.3)

ρc
M(v) := E

⎛

⎝ c�Mv
√

− 1
2c�Mc

⎞

⎠ , and (2.4)

E(z) :=
∫ z

0
e−πu2 du. (2.5)

2.1 Some lemmas about the Siegel upper half-space

The statement of our Kronecker limit formula, Theorem 1.8, involves a matrix 
c
� in the

Siegel upper half-spaceH(0)
2 . Its proof will require a few basic lemmas aboutH(0)

2 .

Lemma 2.1 Let � = (
ω11 ω12
ω12 ω22

) ∈ H(0)
2 . Then

Im
( −1

ω11

)
Im

(
det�
ω11

)
>

(
Im

(
ω12
ω11

))2
. (2.6)

Proof Express � in terms of its real and imaginary parts,
(

ω11 ω12
ω12 ω22

)

=
(
n11 n12
n12 n22

)

+ i
(
m11 m12
m12 m22

)

. (2.7)

Note thatm11 �= 0 becausem11m22−m2
12 = detM > 0, and thusω11 �= 0. By an algebraic

calculation,

Im
( −1

ω11

)
Im

(
det�
ω11

)
−

(
Im

(
ω12
ω11

))2
= m11m22 − m2

12
n211 + m2

11
. (2.8)
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Now, m11m22 − m2
12 = detM is positive, and so is n211 + m2

11. Thus, the inequality (2.6)
holds. ��

We will also need the following inequality.

Lemma 2.2 Let � = (
ω11 ω12
ω12 ω22

) ∈ H(0)
2 . The two roots of Q�

( z
1
) = 0 are τ1 =

−ω12−
√

det(−i�)
ω11

and τ2 = −ω12+
√

det(−i�)
ω11

. Then, Im(τ1) > 0 > Im(τ2).

Proof We have Q�

( z
1
) = 1

2
(
ω11z2 + 2ω12z + ω22

)
, and the expressions for the roots

come from the quadratic formula.
For any complex numbers α = a1 + ia2 and β = b1 + ib2, (Im(αβ))2 − Im(α2) Im(β2) =

(a1b2 − a2b1)2 ≥ 0. Thus, (Im(αβ))2 ≥ Im(α2) Im(β2).
In particular, taking α = 1√−ω11

and β =
√

det(−i�)√−ω11
(for any choice of

√−ω11), we
obtain the inequality

(

Im
(√

det(−i�)
ω11

))2

≥ Im
( −1

ω11

)
Im

(
det(−i�)

−ω11

)
(2.9)

= Im
( −1

ω11

)
Im

(
det(�)
ω11

)
. (2.10)

Appealing to Lemma 2.1, we see by transitivity that
(

Im
(√

det(−i�)
ω11

))2

>

(
Im

(
ω12
ω11

))2
. (2.11)

By subtracting the left-hand side and factoring, this inequality may be rewritten as 0 >

Im(τ1) Im(τ2). So Im(τ1) and Im(τ2) are always nonzero real numbers with opposite signs.

In the special case � = ( i 0
0 i

)
, τ1 = −ω12−

√
det(−i�)

ω11
= i and τ2 = −ω12+

√
det(−i�)

ω11
= −i.

SinceH(0)
2 is connected, we always have Im(τ1) > 0 > Im(τ2). ��

2.2 Some integrals involving E(u)
We will now prove a few integral formulas that we will need.

Lemma 2.3 Suppose that α,β ∈ C satisfy Re
(
α2 − 2iβ

)
> 0 and Im(β) > 0. Then, using

the standard branch of the square root function,
∫ ∞

0
E(αt1/2)e(βt) dt = −α

4π iβ
√

α2 − 2iβ
. (2.12)

Moreover, if α1,α2,β ∈ C satisfying Re
(
α2
1 − 2iβ

)
> 0 and Re

(
α2
2 − 2iβ

)
> 0 (without

any constraint on Im(β)), and α1/α2 is not a negative real number, then
∫ ∞

0

(E(α2t1/2) − E(α1t1/2)
)
e(βt) dt = −α2

4π iβ
√

α2
2 − 2iβ

+ α1

4π iβ
√

α2
1 − 2iβ

.

(2.13)

Proof We will first prove (2.12). As t → ∞,

E(αt1/2) =
∫ αt1/2

0
e−πu2 du << |α| t1/2 max

{
1, e−π Re(α2)t

}
, and (2.14)
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e(βt) = e2π iβt << e−2π Im(β)t , so (2.15)

E(αt1/2)e(βt) << |α| t1/2 max
{
e−2π Im(β)t , e−π Re(α2−2iβ)t

}
. (2.16)

Thus, given the assumptions on the domains of α and β , the integral (2.12) converges, as
do the expressions in following integration by parts calculation:

∫ ∞

0
E(αt1/2)e(βt) dt = 1

2π iβ

∫ ∞

0
E(αt1/2) d(e(βt))

dt
dt (2.17)

= 1
2π iβ

(
E(αt1/2)e(βt)∣∣∞t=0 −

∫ ∞

0
e−πα2t α

2
t−1/2e(βt) dt

)

(2.18)

= −α

4π iβ

∫ ∞

0
exp

(− (
πα2 − 2π iβ

)
t
)
t1/2

dt
t

(2.19)

= −α

4π iβ

∫

C
exp(−u)

(
u

πα2 − 2π iβ

)1/2 du
u

(2.20)

= −α

4π3/2iβ
√

α2 − 2iβ

∫

C
e−uu1/2

du
u
, (2.21)

where the contour C is a ray from the origin through the point α2 − 2iβ . If z ∈ C with
x = Re(z) > 0, s ∈ C with σ = Re(s) > 0, and [z1, z2] denotes the oriented line segment
from z1 to z2, then

lim
N→∞

∫

[0,Nz]
e−uus

du
u

= lim
N→∞

(∫

[0,Nx]
e−uus

du
u

+
∫

[Nx,Nz]
e−uus

du
u

)
(2.22)

= �(s) + lim
N→∞

∫

[Nx,Nz]
e−uus

du
u

(2.23)

= �(s) + lim
N→∞O

(
e−NxNσ

)
(2.24)

= �(s). (2.25)

Thus, in particular,
∫
C e−uu1/2 du

u = �
( 1
2
) = π1/2. Plugging this into (2.21) gives (2.12).

We now prove (2.13). If α1 = 0 or α2 = 0, then (2.13) follows immediately from (2.12);
now assume both are nonzero. Let α0 be the closest point on the line [α1,α2] to the origin
in the complex plane; since α1/α2 is not a negative real number, α0 �= 0. As t → ∞,

E(α2t1/2) − E(α1t1/2) =
∫

[α1t1/2 ,α2t1/2]
e−πu2 du << |α0| t1/2

max
{
e−π Re(α2

1)t , e−π Re(α2
2)t

}
, and (2.26)

e(βt) = e2π iβt << e−2π Im(β)t , so (2.27)
(E(α2t1/2) − E(α1t1/2)

)
e(βt) << |α0| t1/2 max

{
e−π Re(α2

1−2iβ)t , e−π Re(α2
2−2iβ)t

}
.

(2.28)

Thus, the integral on the left-hand side of (2.13) converges. The equality with the right-
hand side holds for Im(β) > 0 by (2.12) and in general by analytic continuation. ��

As usual, letM = Im(�). Define the following auxiliary function, which will be related
to the factor κc

�(v) appearing in the integral in the indefinite Kronecker limit formula.
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Definition 2.4 For v ∈ C
2 and s ∈ C, set

κc
�(v, s) := −

∫ ∞

0
ρc
M

(
vt1/2

)
e(Q�(v)t) ts

dt
t
. (2.29)

Also, set

κ
c1 ,c2
� (v, s) := −

∫ ∞

0
ρ
c1 ,c2
M

(
vt1/2

)
e(Q�(v)t) ts

dt
t
. (2.30)

When the integral in (2.29) converges, κc1 ,c2
� (v, s) = κ

c2
� (v, s) − κ

c1
� (v, s).

Recall that in Definition 1.7, for c ∈ {c1, c2}, we defined

κc
�(v) = c�Mv

4π i
√−QM(c)Q�(v)

√
−2iQ
c

�
(v)

. (2.31)

Here 
c
� := � − i

QM (c)Mcc�M ∈ H(0)
2 by Kopp [4, Lemma 3.6]. We will also define

the function κ
c1 ,c2
� (v) := κ

c2
� (v) − κ

c1
� (v). These notations are justified by the following

corollary.

Corollary 2.5 For v �= 0, κc1 ,c2
� (v, 1) = κ

c1 ,c2
� (v).

Proof Follows from Lemma 2.3 [particularly from (2.13)] by taking αj = c�j Mv√−QM (cj)
and

β = Q�(v). Specifically, ρ
cj
M(vt1/2)e(Q�(v)t) = E(αjt1/2)e(βt), and it is straightforward to

check that α2
j − 2iβ = −2iQ



cj
�

(v), and thus αj

4π iβ
√

α2
j −2iβ

= κ
cj
� (v). ��

The following lemma will be needed to evaluate certain integrals.

Lemma 2.6 For any nonzero real number α,
∫ ∞

0
ρ
c1 ,c2
M

(
vαt1/2

)
e
(
Q�(v)α2t

)
ts

dt
t

= − sgn(α)
|α|2s κ

c1 ,c2
� (v, s). (2.32)

Proof Follows from the definition of κc1 ,c2
� (v, s). ��

2.3 Fourier series of a unipotent transform of an indefinite theta function

Consider the function of ξ ∈ R (although ξ will be allowed to be complex later on) and
t ∈ R≥0,

h(ξ , t) := �
T−ξ c1 ,T−ξ c2
(T ξ )�p,T−ξq

(
t
(
T ξ

)�
�T ξ

)
(2.33)

=
∑

n∈Z2

ρ
c1 ,c2
�

((
T ξn + q

)
t1/2

)
e
(
Q�(T ξn + q)t + p�(T ξn + q)

)
. (2.34)

Write this function as a Fourier series,

h(ξ , t) =
∞∑

k=−∞
bk (t)e(kξ ) . (2.35)

We are ultimately interested in the Mellin transform of this function,

ζ̂
T−ξ c1 ,T−ξ c2
(T ξ )�p,T−ξq

((
T ξ

)�
�T ξ , s

)
=

∫ ∞

0
h(ξ , t)ts

dt
t

(2.36)
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=
∞∑

k=−∞
βk (s)e(kξ ) , (2.37)

where, as we will show,

βk (s) :=
∫ ∞

0
bk (t)ts

dt
t
. (2.38)

Express � = (
ω11 ω12
ω12 ω22

)
, n = ( n1n2

)
, p = ( p1

p2
)
, q = ( q1

q2
)
. Write

h(ξ , t) =
∞∑

n2=−∞
hn2 (ξ , t) = h0(ξ , t) + h̃(ξ , t), (2.39)

where hj(ξ , t) is the sum over the terms of (2.34) with n2 = j, and h̃(ξ , t) is the sum over
all the terms where n2 �= 0. Write the Fourier series of h̃(ξ , t) as

h̃(ξ , t) =
∞∑

k=−∞
b̃k (t)e(kξ ) . (2.40)

At this point, we make some further restrictions on the characteristics p and q. As we
are trying to prove Theorem 1.8, wemay assume that q = 0, so q1 = q2 = 0. Additionally,
the identity ζ̂

c1 ,c2
p+a,0(�, s) = ζ̂

c1 ,c2
p,0 (�, s) holds for any a ∈ Z

2, so we may assume without
loss of generality that 0 ≤ p1 < 1; that is, p1 = {p1}.
First, calculate h0(ξ , t):

h0(ξ , t) =
∞∑

n1=−∞
ρ
c1 ,c2
�

(
n1t1/2

0

)
e
(
1
2
ω11n21t + p1n1

)
. (2.41)

The n1 = 0 term of this sum vanishes.
We write, for n2 �= 0,

∫ 1

0
hn2 (ξ , t)e(−kξ ) dξ

=
∫ 1

0

∞∑

n1=−∞
ρ
c1 ,c2
M

(( n1+n2ξn2
)
t1/2

)
e
(
Q�

( n1+n2ξn2
)
t + p�( n1+n2ξn2

))
e(−kξ ) dξ

(2.42)

=
n2−1∑

n1=0

∫ ∞

−∞
ρ
c1 ,c2
M

(( n1+n2ξn2
)
t1/2

)
e
(
Q�

( n1+n2ξn2
)
t + p�( n1+n2ξn2

))
e(−kξ ) dξ

(2.43)

=
n2−1∑

n1=0

∫ ∞

−∞
ρ
c1 ,c2
M

(( n2ξn2
)
t1/2

)
e
(
Q�

( n2ξn2
)
t + p�( n2ξn2

))
e
(

−k
(

ξ − n1
n2

))
dξ

(2.44)

=
⎛

⎝
n2−1∑

n1=0
e
(
kn1
n2

)⎞

⎠
∫ ∞

−∞
ρ
c1 ,c2
M

((
ξ
1
)
n2t1/2

)
e
(
Q�

(
ξ
1
)
n22t + p�(

ξ
1
)
n2

)
e(−kξ ) dξ .

(2.45)
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The exponential sum
n2−1∑

n1=0
e
(
kn1
n2

)
evaluates to |n2| if n2|k , and to 0 otherwise. Thus, for

all k ∈ Z (including k = 0),

∫ 1

0
h̃(ξ , t)e(−kξ ) dξ

=
∑

n2|k
|n2|

∫ ∞

−∞
ρ
c1 ,c2
M

((
ξ
1
)
n2t1/2

)
e
(
Q�

(
ξ
1
)
n22t + p�(

ξ
1
)
n2

)
e(−kξ ) dξ . (2.46)

Our convention here is that a sum over n2|k ranges over both positive and negative n2,
and over all integers when k = 0.

2.4 Shifting the contour vertically

Fix a positive real number λ to be specified later. Let C+ (C−) be the contour consisting
of the horizontal line Im(z) = λ (Im(z) = −λ), oriented towards the right half-plane.
For each d1, d2 ∈ Z, d2 �= 0, let C(d1, d2) be C+ if d1d2 < 0 or d1 = 0 and d2 > 0; let
C(d1, d2) be C− if d1d2 > 0 or d1 = 0 and d2 < 0. The integrands in (2.46) approach zero
as Re(ξ ) → ±∞, so we may rewrite this formula using contour integrals

∫ 1

0
h̃(ξ , t)e(−kξ ) dξ

=
∑

n2|k
|n2|

∫

C
(

k
n2

,n2
) ρ

c1 ,c2
M

((
ξ
1
)
n2t

1
2
)
e
(
Q�

(
ξ
1
)
n22t + p�(

ξ
1
)
n2

)
e(−kξ ) dξ . (2.47)

2.5 Taking Mellin transforms term-by-term

To calculate the Mellin transform of h0(ξ , t), we need to check absolute convergence to
justify reversing the order of summation/integration.

Proposition 2.7 If σ = Re(s) > 1
2 , then

∫ ∞

0

∞∑

n1=−∞

∣∣
∣∣ρ

c1 ,c2
�

(
n1t1/2

0

)
e
(
1
2
ω11n21t + p1n1

)∣∣
∣∣ t

σ dt
t

< ∞. (2.48)

Proof We bound the integral as follows.

∫ ∞

0

∞∑

n1=−∞

∣∣∣
∣ρ

c1 ,c2
�

(
n1t1/2

0

)
e
(
1
2
ω11n21t + p1n1

)∣∣∣
∣ t

σ dt
t

(2.49)

=
∫ ∞

0

∞∑

n1=−∞

∣∣
∣∣ρ

c1 ,c2
�

(
t1/2
0

)
e
(
1
2
ω11t

)∣∣
∣∣

(
t
n21

)σ
dt
t

(2.50)

=
( ∞∑

n1=−∞
|n1|−2σ

) (∫ ∞

0

∣
∣∣∣ρ

c1 ,c2
�

(
t1/2
0

)
e
(
1
2
ω11t

)∣
∣∣∣ t

σ dt
t

)
(2.51)

< ∞. (2.52)

The sumconverges for σ > 1
2 , and the integral converges for σ > 0 (because the integrand

approaches a constant at t → 0 and decays exponentially as t → ∞). ��
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Therefore, we can switch the sum and the integral. Using Lemma 2.6 and dropping the
subscript on n1,

∫ ∞

0
h0(ξ , t)ts

dt
t

= −
∑

n∈Z\{0}

sgn(n)e(p1n)
|n|2s κ

c1 ,c2
�

(( 1
0
)
, s

)
(2.53)

= − (Li2s(e(p1)) − Li2s(e(−p1))) κc1 ,c2
�

(( 1
0
)
, s

)
. (2.54)

Next, we are going to calculate the Mellin transform of h̃(ξ , t). We need an absolute
convergence result to justify our calculation here, too.

Proposition 2.8 Suppose σ = Re(s) > 1
2 . Then,

∑

k∈Z

∑

n2|k
n2 �=0

∫ ∞

0

∫

C
(

k
n2

,n2
)

∣∣
∣ρc1 ,c2

M
((

ξ
1
)
n2t1/2

)
e
(
Q�

(
ξ
1
)
n22t + p�(

ξ
1
)
n2

)
e(−kξ ) ts

∣∣
∣
dt
t
dξ

< ∞. (2.55)

Proof Let

K± :=
∫ ∞

0

∫

C±

∣
∣ρc1 ,c2

M
((

ξ
1
)
t1/2

)
e
(
Q�

(
ξ
1
)
t
)∣∣ tσ dξ

dt
t

< ∞. (2.56)

Set K := max{K+, K−}. We have

∑

k∈Z

∑

n2|k
n2 �=0

∫ ∞

0

∫

C
(

k
n2

,n2
)

∣
∣
∣ρc1 ,c2

M
((

ξ
1
)
n2t1/2

)
e
(
Q�

(
ξ
1
)
n22t + p�(

ξ
1
)
n2

)
e(−kξ ) ts

∣
∣
∣
dt
t
dξ

=
∑

k∈Z

∑

n2|k
n2 �=0

∫ ∞

0

∫

C
(

k
n2

,n2
)
∣∣ρc1 ,c2

M
((

ξ
1
)
n2t1/2

)
e
(
Q�

(
ξ
1
)
n22t

)∣∣ e−2πλk tσ
dt
t
dξ (2.57)

=
∑

k∈Z

∑

n2|k
n2 �=0

∫ ∞

0

∫

C
(

k
n2

,n2
)
∣
∣ρc1 ,c2

M
((

ξ
1
)
t1/2

)
e
(
Q�

(
ξ
1
)
t
)∣∣ e−2πλk

(
t
n22

)σ
dt
t
dξ

(2.58)

≤ K
∑

k∈Z

∑

n2|k
n2 �=0

e−2πλkn−2σ
2 (2.59)

= K
∑

d1∈Z

∑

d2∈Z\{0}
e−2πλ|d1d2|d−2σ

2 (2.60)

< ∞. (2.61)

The proposition is proved. ��

Now we may justify taking the Mellin transform of the Fourier series term-by-term. It
follows from Proposition 2.8 that

ζ̂
T−ξ c1 ,T−ξ c2
(T ξ )�p,0

((
T ξ

)�
�T ξ , s

)
=

∫ ∞

0
h(ξ , t)ts

dt
t

=
∞∑

k=−∞
βk (s)e(kξ ) , (2.62)
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where βk (s) :=
∫ ∞

0
bk (t)ts

dt
t
. Define β̃k (s) :=

∫ ∞

0
b̃k (t)ts

dt
t
; then,

βk (s) =
{

− (Li2s(e(p1)) − Li2s(e(−p1))) κc1 ,c2
�

(( 1
0
)
, s

) + β̃0(s) if k = 0,
β̃k (s) if k �= 0.

(2.63)

Proposition 2.8 also implies that we can switch the order of integration to compute

β̃k (s) =
∫ ∞

0

∫ 1

0
h̃(ξ , t)e(−kξ ) dξ ts

dt
t

(2.64)

=
∑

n2|k
|n2|

∫

C
(

k
n2

,n2
) e

(
n2p�(

ξ
1
) − kξ

) (− sgn(n2) |n2|−2s κc1 ,c2
�

((
ξ
1
)
, s

))
dξ

(2.65)

= −
∑

n2|k

sgn(n2)
|n2|2s−1

∫

C
(

k
n2

,n2
) e(n2(p1ξ + p2) − kξ ) κc1 ,c2

�

((
ξ
1
)
, s

)
dξ . (2.66)

2.6 Series manipulations

In this subsection, we set ξ = 0 in (2.62). We will manipulate the right-hand side of this
equation to prove Theorem 1.8. First of all, we have

ζ̂
c1 ,c2
p,0 (�, s) =

∞∑

k=−∞
βk (s) (2.67)

= − (Li2s(e(p1)) − Li2s(e(−p1))) κc1 ,c2
�

(( 1
0
)
, s

) +
∞∑

k=−∞
β̃k (s). (2.68)

We will rewrite the sum of the β̃k (s) using the substitution (d1, d2) = ( k
n2 , n2). The follow-

ing manipulation is legal by Proposition 2.8.

∞∑

k=−∞
β̃k (s)=−

∑

k∈Z

∑

n2|k
n2 �=0

sgn(n2)
|n2|2s−1

∫

C
(

k
n2

,n2
) e(n2(p1ξ + p2) − kξ ) κc1 ,c2

�

((
ξ
1
)
, s

)
dξ (2.69)

= −
∑

d1∈Z

∑

d2∈Z\{0}

sgn(d2)
∣∣d2

∣∣2s−1

∫

C(d1 ,d2)
e(d2(p1ξ + p2) − d1d2ξ ) κc1 ,c2

�

((
ξ
1
)
, s

)
dξ .

(2.70)

Split up the series into four pieces.

∞∑

k=−∞
β̃k (s) = −

∑

d1>0

∑

d2>0

e(d2p2)
∣∣d2

∣∣2s−1

∫

C−
e(−(d1 − p1)d2ξ ) κc1 ,c2

�

((
ξ
1
)
, s

)
dξ

+
∑

d1>0

∑

d2<0

e(d2p2)
∣∣d2

∣∣2s−1

∫

C+
e(−(d1 − p1)d2ξ ) κc1 ,c2

�

((
ξ
1
)
, s

)
dξ

−
∑

d1≤0

∑

d2>0

e(d2p2)
∣∣d2

∣∣2s−1

∫

C+
e(−(d1 − p1)d2ξ ) κc1 ,c2

�

((
ξ
1
)
, s

)
dξ

+
∑

d1≤0

∑

d2<0

e(d2p2)
∣
∣d2

∣
∣2s−1

∫

C−
e(−(d1 − p1)d2ξ ) κc1 ,c2

�

((
ξ
1
)
, s

)
dξ (2.71)

= −
∑

d1>0

∑

d2>0

e(d2p2)
∣
∣d2

∣
∣2s−1

∫

C+
e((d1 − p1)d2ξ ) κc1 ,c2

�

(( −ξ
1

)
, s

)
dξ
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+
∑

d1>0

∑

d2<0

e(d2p2)
∣∣d2

∣∣2s−1

∫

C+
e(−(d1 − p1)d2ξ ) κc1 ,c2

�

((
ξ
1
)
, s

)
dξ

−
∑

d1≤0

∑

d2>0

e(d2p2)
∣
∣d2

∣
∣2s−1

∫

C+
e(−(d1 − p1)d2ξ ) κc1 ,c2

�

((
ξ
1
)
, s

)
dξ

+
∑

d1≤0

∑

d2<0

e(d2p2)
∣
∣d2

∣
∣2s−1

∫

C+
e((d1 − p1)d2ξ ) κc1 ,c2

�

(( −ξ
1

)
, s

)
dξ (2.72)

= −
∑

d1>0

∑

d2>0

e(d2p2)
d2s−1
2

∫

C+
e((d1 − p1)d2ξ ) κc1 ,c2

�

(( −ξ
1

)
, s

)
dξ

+
∑

d1>0

∑

d2>0

e(−d2p2)
d2s−1
2

∫

C+
e((d1 − p1)d2ξ ) κc1 ,c2

�

((
ξ
1
)
, s

)
dξ

−
∑

d1≥0

∑

d2>0

e(d2p2)
d2s−1
2

∫

C+
e((d1 + p1)d2ξ ) κc1 ,c2

�

((
ξ
1
)
, s

)
dξ

+
∑

d1≥0

∑

d2>0

e(−d2p2)
d2s−1
2

∫

C+
e((d1 + p1)d2ξ ) κc1 ,c2

�

(( −ξ
1

)
, s

)
dξ . (2.73)

Now, move the contour integral outside the sums, and rewrite the series as

∞∑

k=−∞
β̃k (s)

=
∫

C+

⎛

⎝
∑

d2≥0

e(−p2 + p1ξ )d2

d2s−1
2

κ
c1 ,c2
�

(( −ξ
1

)
, s

) −
∑

d2≥0

e(p2 + p1ξ )d2

d2s−1
2

κ
c1 ,c2
�

((
ξ
1
)
, s

)

+
∑

d1>0

∑

d2>0

1
d2s−1
2

((
−e((d1 − p1)ξ + p2)d2 + e((d1 + p1)ξ − p2)d2

)
κ
c1 ,c2
�

(( −ξ
1

)
, s

)

+
(
e((d1 − p1)ξ − p2)d2 − e((d1 + p1)ξ + p2)d2

)
κ
c1 ,c2
�

((
ξ
1
)
, s

)))
dξ . (2.74)

Setting s = 1 and using Corollary 2.5, and evaluating the sums over d2 using the power
series for the logarithm, we obtain

∞∑

k=−∞
β̃k (1)

=
∫

C+
(− log(1 − e(−p2 + p1ξ ))κc1 ,c2

�

( −ξ
1

) + log(1 − e(p2 + p1ξ ))κc1 ,c2
�

(
ξ
1
)

+
∞∑

d1=1

(
(log (1 − e((d1 − p1)ξ + p2)) − log(1 − e((d1 + p1)ξ − p2))) κc1 ,c2

�

( −ξ
1

)

+ (− log(1 − e((d1 − p1)ξ − p2)) + log(1 − e((d1 + p1)ξ + p2))) κc1 ,c2
�

(
ξ
1
)))

dξ .
(2.75)

We want to write this sum of logarithms as a logarithm of a product, but there is the issue
of the choice of branch. In order to make a clear choice, let

ϕp1 ,p2 (ξ ) := (1 − e(p1ξ + p2))
∞∏

d=1

1 − e((d + p1)ξ + p2)
1 − e((d − p1)ξ − p2)

(2.76)

for ξ ∈ H. This is a function on the upper half-plane which is never zero, and the upper
half-plane is simply connected, so it has a choice of continuous logarithm. The product
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in (2.76) is absolutely and uniformly continuous as ξ → i∞, and each term approaches 1
in that limit (because d + p1 > 0 and d − p1 > 0). So

lim
ξ→i∞ ϕp1 ,p2 (ξ ) =

{
1 − e(p2) if p1 = 0,
1 if p1 �= 0.

(2.77)

Let
(
Log ϕp1 ,p2

)
(ξ ) be the branch such that

lim
ξ→i∞

(
Log ϕp1 ,p2

)
(ξ ) =

{
log(1 − e(p2)) if p1 = 0,
0 if p1 �= 0.

(2.78)

Here log(1 − e(p2)) is the standard principal branch. (Note that p2 �= 0 if p1 = 0.) Thus,

∞∑

k=−∞
β̃k (1) =

∫

C+
(− (

Log ϕp1 ,−p2
)
(ξ ) · κ

c1 ,c2
�

( −ξ
1

) + (
Log ϕp1 ,p2

)
(ξ ) · κ

c1 ,c2
�

(
ξ
1
))

dξ .

(2.79)

Adding back the other piece of β0(1) into ζ̂
c1 ,c2
p,0 (�, 1) =

∑∞
k=−∞ βk (1), we obtain

ζ̂
c1 ,c2
p,0 (�, 1) = − (Li2(e(p1)) − Li2(e(−p1))) κc1 ,c2

�

( 1
0
)

+
∫

C+
(− (

Log ϕp1 ,−p2
)
(ξ ) · κ

c1 ,c2
�

( −ξ
1

) + (
Log ϕp1 ,p2

)
(ξ ) · κ

c1 ,c2
�

(
ξ
1
))

dξ .

(2.80)

2.7 Collapsing the contour onto the branch cuts

We could declare ourselves done at this point. Equation (2.80) is a formula for ζ̂
c1 ,c2
p,0 (�, 1),

as we desired, and it appears very difficult to evaluate or simplify the contour integral in
any way. However, (2.80) is not a useful formula for computation because the integral
converges slowly. The integrand decays polynomially as ξ → ±∞ along the horizontal
contour C+.
Wewill obtain aKronecker limit formulawith rapid convergence by shifting the contour

so that the integrand decays exponentially. In doing so, we will also split up the formula as
a difference of a c1-piece and a c2-piece. The movement of the contour is shown in Fig. 1.
Let 
c

� := � − i
QM (c)Mcc�M for c ∈ {c1, c2}, as previously in Definition 1.7 and

Corollary 2.5. Factor the quadratic polynomial Q
c
�

(
ξ
1
)
in ξ ,

Q
c
�

(
ξ
1
) = α(c)(ξ − τ1(c))(ξ − τ2(c)). (2.81)

Since 
c
� ∈ H(0)

2 by Kopp [4, Lemma 3.6], we know by Lemma 2.2 that we may choose
τ1(c) to be in the upper half-plane and τ2(c) in the lower half-plane.
The complex function ξ �→ κc

�

(
ξ
1
)
has branch cuts along the vertical ray from τ1(c) to

i∞ and the vertical ray from τ2(c) to −i∞. We check that this function is holomorphic
away from these branch cuts. Since κc

�

(
ξ
1
)
has simple poles at the roots ξ = r1, r2 of

Q�

(
ξ
1
) = 0, wemust check that the residues at the poles cancel when taking the difference

κ
c1 ,c2
�

(
ξ
1
) = κ

c2
�

(
ξ
1
) − κ

c1
�

(
ξ
1
)
. We have

res
ξ→r1

κc
�

(
ξ
1
) = lim

ξ→r1
(ξ − r1)

c�M
(

ξ
1
)

2π iQ�

(
ξ
1
)√(

c�M
(

ξ
1
))2 − 2iQM(c)Q�

(
ξ
1
) (2.82)
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Fig. 1 The contour C+ is moved above the poles of κc
�

(
ξ
1

)
, then collapsed onto branch cuts

= lim
ξ→r1

c�M
(

ξ
1
)

π iω11(ξ − r2)
√(

c�M
(

ξ
1
))2 − 2iQM(c)Q�

(
ξ
1
) (2.83)

= 1
π iω11(r1 − r2)

, (2.84)

and similarly, res
ξ→r2

κc
�

(
ξ
1
) = 1

π iω11(r2−r1) . These residues donot dependon c, so they cancel,

and κ
c1 ,c2
�

(
ξ
1
)
is holomorphic at r1 and r2.

Move the contours of integration above the zeros of Q�

( ±ξ
1

)
. Now we may safely split

up the integral into a term for c1 and a term for c2. (See Fig. 1.)
Now we retract each integral onto the corresponding branch cut, as shown in Fig. 1.

As ξ = ±τ± + ε and ε → 0, the denominator of the integrand blows up like ε1/2, so
the integral converges. The integrand changes sign when we cross the branch cut. Thus,
(2.80) becomes

ζ̂
c1 ,c2
p,0 (�, 1) = I+(c2) − I−(c2) − I+(c1) + I−(c1), (2.85)
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where

I±(c) := −Li2(e(±p1))κc
�

( 1
0
)

+ 2i
∫ ∞

0

(
Log ϕp1 ,±p2

)
(±τ±(c) + it)κc

�

(
±(τ±(c)+it)

1

)
dt. (2.86)

We have now proven Theorem 1.8. Theorem 1.9 follows by specialising the variables,
setting � = iM and restricting to c1, c2 ∈ R

g . Theorems 1.10 and 1.11 both follow by
application of the functional equation (Theorem 1.6).

3 Example
We conclude with an example to show how to use the Kronecker limit formula for indef-
inite zeta functions to compute Stark units. This example was introduced in [4, Sect. 7.1].
Let K = Q(

√
3), so OK = Z[

√
3], and let c = 5OK . The ray class group Clc∞2 (OK ) ∼=

Z/8Z. The fundamental unit ε = 2+√
3 is totally positive: εε′ = 1. It has order 3 modulo

5: ε3 = 26 + 15
√
3 ≡ 1 (mod 5). In this section, we use the Kronecker limit formula for

indefinite zeta functions to computeZ′
I (0), where I is the principal ray class of Clc∞2 (OK ).

Let M = ( 2 0
0 −6

)
, q = ( 1/5

0
)
, and c1 ∈ R

2 any column vector with the property that
c�1Mc1 < 0, such as c1 = ( 0

1
)
. By Corollary 1.16 and the discussion in [4, Sect. 7.1], we

have

Z′
I (0) = ζ̂

c1 ,P3c1
0,q (�, 0), (3.1)

where � = iM and P = ( 2 3
1 2

)
.

Now we want to use Theorem 1.11 to compute the right-hand side of (3.1). If we
try to do so directly, we obtain P3 = ( 26 45

15 26
)
, P3c1 = ( 45

26
)
, �P3c1 = 6i

( −15
26

)
, and



�P3c1
−�−1 = −i

( 675 390
390 676/3

)
. The root of Q



�P3c1
−�−1

(
ξ
1
)
in the upper half-plane (equivalently,

the branch point of κ
�P3c1
−�−1

(
ξ
1
)
in the upper half-plane) is ξ = −2340+i

√
3

4053 , which is very
close to the real axis. That means we’d need to use about log(10)N

2π
√
3/4053

≈ 857.5N terms in
the product expansion of ϕ{−q1},−q2 (ξ ) to compute Z′

I (0) to N decimal places of accuracy.
We technically have exponential decay, but it is not very useful.
It is muchmore practical to break up the zeta function into pieces.We can also improve

the rate of convergence by choosing c1 optimally; here, we will use c = ( −1
1

)
in place of

c1 = ( 0
1
)
. We have

Z′
I (0) = ζ̂

c,P3c
0,q (�, 0) (3.2)

= ζ̂
c,Pc
0,q (�, 0) + ζ̂

Pc,P2c
0,q (�, 0) + ζ̂

P2c,P3c
0,q (�, 0) (3.3)

= ζ̂
c,Pc
0,q (�, 0) + ζ̂

c,Pc
0,q′ (�, 0) + ζ̂

c,Pc
0,q′′ (�, 0), (3.4)

where q = 1
5

( 1
0
)
, q′ = 1

5
( 2
1
)
, and q′′ = 1

5
( 2
4
)
are obtained from the residues of the global

units ε0, ε1, ε2 modulo 5.
Now, we have κ�c

−�−1
(

ξ
1
) = −3

√
6(ξ−1)

π (3ξ2−1)
√

3ξ2−3ξ+1
and κ�Pc

−�−1
(

ξ
1
) = 3

√
6(ξ+1)

π (3ξ2−1)
√

3ξ2+3ξ+1
,

with branch points in the upper half-plane at ξ = 3+i
√
3

6 and ξ = −3+i
√
3

6 , respectively.
We thus need to use about log(10)N

2π
√
3/6

≈ 1.269N terms in the product expansion of each of
the functions ϕ{−q1},−q2 (ξ ), ϕ{−q′

1},−q′
2
(ξ ), and ϕ{−q′′

1 },−q′′
2
(ξ ) to compute Z′

I (0) toN decimal
places of accuracy by this method. For q,q′,q′′, we computed the corresponding values of
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the integrals J (c), J ′(c), J ′′(c) and J (Pc), J ′(Pc), J ′′(Pc) given by (1.20). The computationwas
performed in Mathematica using numerical integral of the first 40 terms of the product
expansion of each ϕ. For the differences of the two integrals, we obtain

J (Pc) − J (c) ≈ −0.05923843917544488329354507987

+ 3.65687839020311786132893850239i, (3.5)

J ′(Pc) − J ′(c) ≈ −1.33733021085943469210685014899

+ 0.52477812529424663387556899167i, and (3.6)

J ′′(Pc) − J ′′(c) ≈ 2.64057587271922212456484190607

+ 0.52477812529424663387556899167i. (3.7)

For the ray class zeta value, we thus calculate using Theorem 1.11 that

Z′
I (0) = ζ̂

c,Pc
0,q (�, 0) + ζ̂

c,Pc
0,q′ (�, 0) + ζ̂

c,Pc
0,q′′ (�, 0) (3.8)

= 2i√
detM

Im(J (Pc) − J (c)) + 2i√
detM

(J ′(Pc) − J ′(c))

+ 2i√
detM

(J ′′(Pc) − J ′′(c)) (3.9)

= 1
2
√
3
Im

(
J (Pc) − J (c) + J ′(Pc) − J ′(c) + J ′′(Pc) − J ′′(c)

)
(3.10)

≈ 1.35863065339220816259511308230. (3.11)

This agrees (to 30 decimal digits) with the computations described in [4, Sect. 7.1]. The
conjectural Stark unit is exp(Z′

I (0)) ≈ 3.89086171394307925533764395962. This number
appears to be the root of the polynomial

x8 − (8 + 5
√
3)x7 + (53 + 30

√
3)x6 − (156 + 90

√
3)x5 + (225 + 130

√
3)x4

− (156 + 90
√
3)x3 + (53 + 30

√
3)x2 − (8 + 5

√
3)x + 1, (3.12)

which we have verified lies in the appropriate class field.
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